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ξ =


ξ1

ξ2
...
ξd

 u = M(ξ) q(u(ξ)) =


time average

spatial average

mean flux



ξ1 ∈ Iξ1

ξ2 ∈ Iξ2

...
ξd ∈ Iξd

u = M(ξ)

Every value of ξ will produce the same value in the QOI.



l

(Ω,F ,P)
ρ(ξ) =∏d
i=1 ρi (ξi )

u = M(ξ)

Give distributions on the input data we can calculate statistical
moments, distributions, etc. of the QOIs



We can sample from the input distributions to calculate statistics

ξ =


ξ1

ξ2
...
ξd

 u = M(ξ)

but...



Simulation models are computationally and financially expensive

(Ω,F ,P)
ρ(ξ) =∏d
i=1 ρi (ξi )

u = M(ξ)

Approximation issue: how do we use samples of x to learn f .
(focus of this talk).

Design issue: how to choose the instances of x to maximize
information gain whilst minimizing cost.



Ice-sheet modelling

Model seal-level rise due to ice-sheet loss in Greenland

Initial problem develop steady state condition and quantify
uncertainty due to uncertainty in basal friction.8>>>><>>>>:

−∇ · (2µ ε̇1) = −ρg
∂s

∂x

−∇ · (2µ ε̇2) = −ρg
∂s

∂y
,

2µε̇1 = βu1, 2µε̇2 = βu2

where ε̇1 and ε̇2 consist of a strain rate tensor and µ a nonlinear ice viscosity and an effective strain rate.



Ice-sheet modelling

Model friction using Karhunen Loeve
expansion

log(β(x, ξ)) = β̄0(x) +
d∑

k=1

√
λkφk(x)ξk

where {λk}dk=1 and {φk(x)}dk=1 are,
respectively, the eigenvalues and
eigenfunctions of an assumed covariance
kernel, e.g.

Ca(x1, x2) = exp

[
−(x1 − x2)2

l2
c

]

Mike Eldred, Irina Kalashnikova, Mauro Perego, Andy Salinger,
Laura Swiler

First 4 KLE bases

Mean field



Infer distribution of friction using Bayesian inference

P(ξ|d) =
P(d|ξ)Pξ(ξ)∫
P(d|ξ)Pξ(ξ) dξ

where the likelihood the model is correct given the data is

P(d|ξ) = L(ξ) =

Nd∏
i=1

Pη(di −Mi (ξ))

M is the output of the model or a surrogate



Polynomial Chaos
Polynomial Chaos methods represent a function f (ξ) ∈ L2(ρ(ξ)) as
an expansion of orthogonal polynomials

f (ξ) ≈ f̂ (ξ) =
∑
φλ∈A

αλφλ(ξ), λ = (λ1, . . . , λd)

where {φλ(ξ)} are tensor product of orthonormal polynomials
which are chosen to be orthogonal to a distribution ρ(ξ) of the
random vector ξ. That is(

φλi
(ξ), φλj

(ξ)
)

=

∫
Iξ

φλi
(ξ)φλj

(ξ)ρ(ξ) = δij

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π

e
−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]

Uniform 1
2

Legendre Pn(x) 1 [−1, 1]

Beta
(1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (1− x)α(1 + x)β [−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1)
Generalized Laguerre L

(α)
n (x) xαe−x [0,∞]



Polynomial Chaos: statistics
A number of important statistics can be computed directly from
the PCE

E[ ˆf (ξ)] = α{0,...,0}, Var[ ˆf (ξ)] =
∑
φλ∈A

α2
λ〈φ2

λ〉 − α2
{0,...,0}

Due to the orthogonality of the PCE basis we can also easily
calculate the popular Sobol indices

σu =
1

Var[ ˆf (ξ)]

∑
j∈J

c2
j 〈Φ2

j 〉, J = {j : nonzeros(j) = u}

where u ⊆ {1, . . . , d} is the set of active dimensions. The main
effect indices are the sum of all indices involving only the ith
variable and the total effect indices are just the sum of all the
indices involving the ith, i.e.

SMi
=

∑
{u:u={i}}

σu, STi
=

∑
{u:i∈u}

σu



Estimating the PCE coefficients

I Stochastic Galerkin method
I Galerkin projection is used to solve the variational form of a

set of differential equations producing a set of coupled
equations that must be solved. Requires solver modification

I Pseudo-spectral methods
I The PCE coefficients are determined by the following

Fourier-type integrals

αλi = (f (ξ), φλi (ξ)) =

∫
Iξ

f (ξ)φλi (ξ) dρ(ξ), i = 1, . . . ,P

These integrals can be evaluated via sparse grid quadrature.
Need to limit aliasing errors

I Sparse grid interpolation
I Construct sparse grid interpolant using Lagrange basis

functions and perform linear transformation into the desired
PCE basis. Preferred



Compressive sensing
Given a small set of M of (possibly un-structured) realizations with
corresponding model outputs

Ξ = {ξ1, . . . , ξM}, f = (f (ξ1), . . . , f (ξM))T

we would like to find a solution to26664
f (ξ(1))

f (ξ(2))
...

f (ξ(M))

37775 =

26664
φλ1 (ξ(1)) φλ2 (ξ(1)) . . . φλP (ξ(1))

φλ1 (ξ(2)) φλ2 (ξ(2)) . . . φλP (ξ(2))
...

...
...

φλ1 (ξ(M)) φλ2 (ξ(M)) . . . φλP(ξ(M))

37775

266666666664

αλ1

αλ2

...

...

...
αλP

377777777775
+

26664
e1

e2

...
eM

37775
Must choose truncation. Typically

A = Ad
p,q = {φλ : ‖λ‖q ≤ p}

with q = 1. The number of terms in this total degree basis

card Ad
p,1 ≡ P =

(
d + p

d

)
Basis grows exponentially with dimension. So often M � P



Sparsity
A polynomial chaos expansion (signal) is defined to be s-sparse
when ‖α‖0 ≤ s. In practice, not many PCE will be truly sparse,
but rather the magnitude of the PCE coefficients will decay rapidly

s = #{λ : |αλ| > τ}

When PCE is compressible it is still well approximated by a sparse
signal.



Compressive sensing
Compressive sensing attempts to find the dominant PCE
coefficients by solving the following optimization problem

c = arg min
c

‖c‖1 such that ‖Φc− f‖2 ≤ ε

‖α‖1 =
P∑

i=1

|αi |

Geometric interpretation

Baraniuk (2007)



Mutual Coherence

The mutual coherence effects the performance of compressive
sensing

µ(Φ) = max
1<j<k≤P

∣∣∣φ̃T
j φ̃k

∣∣∣∥∥∥φ̃j

∥∥∥
2

∥∥∥φ̃k

∥∥∥
2

Compressive sensing will obtain a better estimate of the PCE
coefficients if the mutual coherence of Φ is small.

Intuitively, if two columns are closely correlated the mutual
coherence will be large and it will be impossible in general to
distinguish whether the energy in the signal comes from one or the
other.

Blindly choosing a large degree p can cause a degradation in the
accuracy of the PCE coefficients.



Mutual Coherence
Mutual coherence increases with degree p



Growth of PCE basis

Figure: (Left) A total degree index set A3
10,1. (Right) A hyperbolic index

set A3
10,2/5.

Total degree truncation grows to quickly with dimension limiting its
ability to recover high-degree terms.

Hyperbolic sets will have difficulty recovering basis terms with many

active variables.



Compressive sensing solvers
There are many compressive sensing algorithms used to find sparse
solutions

Figure: Bridging provably convergent `1 minimization algorithms and
greedy algorithms such as OMP. Donoho 2008

I Quadratic cone optimization provably solves `1 minimization

I Homotopy provably solves `1 minimization problems.

I OMP and LARS are greedy approximations OMP solves a
least-squares problem at each iteration, whereas LARS solves
a linearly penalized least-squares problem.

I LARS is easily modified to solve the homotopy problem.



Orthogonal matching pursuit (OMP)

Algorithm 1 α=Orthogonal Matching Pursuit (OMP)[Φ,f,ε]

1: Set r0 = f, Λ0 = ∅, i = 0
2: while ‖ri‖2 > ε or i < M do
3: i = i + 1

4: λi = arg maxλk∈Λ
|rTi−1φ̃λk |
‖φ̃λk‖2

, Λi = Λi−1 ∪ λi

5: αi = Pi f, ri = (I − Pi )f
6: end while



Cross validation

Let κ : {1, . . . ,N} → {1, . . . ,K} be an indexing function that
determines the partition of the training data. Furthermore let f̂ −κ

the approximation built on the data with the κ part removed, then
the cross validation error is given by

CV (γ) =
1

N

K∑
k=1

eκ(k), eκ(k) =
∑

j∈κ(k)

(yj − f̂ −κ(k)(xj))2 (1)

where γ is a set of hyper-parameters, for example γ = (t, ε),
which can be estimated using cross validation.



Cross validation: estimating hyper-parameters

Figure: The use of cross validation to select the truncation tolerance ε



Cross validation: estimating hyper-parameters

Cross validation can be used to choose the degree p. (non-adapted
method)

In high dimensions we can only consider 2nd or 3rd degree basis

p 3 4 5

|A40
3,1| 12, 341 135, 751 1, 221, 759

What if the function is anisotropic and some of the largest
coefficients correspond to higher degree terms p > 3?

Lets try and determine the basis iteratively



Basis selection

Algorithm 2 Λ?,α?=BASIS SELECTION[Φ,f,ε]

Set Λ? = Λ0 = Ad
p,1 = arg minAd

p,1∈{A
d
1,1,A

d
2,1,...}

˛̨
|Ad

p,1| − 10M
˛̨

Set t? = 3, CV ? =∞, i = 1
while TRUE do

αi , CVi = CS[Φ(Λi−1),f]
Λεi = {λ : λ ∈ Λi−1,αλ 6= 0}
for t ∈ {1, . . . , t?} do

Λi,t = EXPAND[Λεi (αi ),t]
αi,t , CVi,t = CS[Φ(Λi,t),f]
if CVi,t < CVi then

CVi = CVi,t , αi = αi,t , Λi = Λi,t , t? = t
end if

end for
if CV ?

i > CV ? then
TERMINATE

end if
CV ? = CVi , Λ? = {λ : λ ∈ Λi ,αλ 6= 0}, α? = {αλ : λ ∈ Λi ,αλ 6= 0}
i = i + 1

end while



Index set expansion
Choose indices satisfying the following admissibilty criterion

λ− ek ∈ Λ for 1 ≤ k ≤ d , λk > 1

0 1 2 3 4 0 1 2 3 4
0

1

2

3

4

Figure: Identifying an admissible index. The non-zero indices identified by
CS, Λε

i , are in gray, admissible indices are stripped, the index being is red.



Numerical study

I To numerically demonstrate the properties of basis selection
we will build PCE using maxi-min Latin hypercube samples
Ξ = {ξi}Mi=1 of size M

I For the small sample sizes M the selection of Ξ significantly
effects the performance of any approximation method

I We will use the RMSE to measure the accuracy of the PCEs
constructed. Specifically given a set of Q = 100, 000 LHD
samples Ξtest = {ξ(i)}Qi=1 ∈ [0, 1]d and samples of the true

function f (ξ(i)) and the PCE approximation f̂ (ξ(i)) we
compute

ε`2 =

(
1

Q

Q∑
i=1

|f̂ (ξ(i))− f (ξ(i))|2
)1/2



Algebraic Function
Consider the algebraic test function

fCP(x) =

(
1 +

d∑
k=1

ck ξk

)−(d+1)

, ξ ∈ [0, 1]d

c
(1)
k =

k − 1
2

d
, c

(2)
k =

1

k2
and c

(3)
k = exp

(
k log(10−8)

d

)

Figure: Errors in the PCE for increasing design sizes M. top-left: c(1),
top-right: c(2), bottom: c(3)



Algebraic Function



Damped Harmonic Oscillator

d2x

dt2
(t, ξ) + γ

dx

dt
+ kx = f cos(ωt),

x(0) = x0, ẋ(0) = x1,

ξ = (γ, k , f , ω, x0, x1)



Damped Harmonic Oscillator

Figure: Total effect sensitivity indices for the random oscillator.



Diffusion Equation

− d

dx

[
a(x , ξ)

du

dx
(x , ξ)

]
= 1, (x , ξ) ∈ (0, 1)× Iξ (2)

subject to the physical boundary conditions

u(0, ξ) = 0, u(1, ξ) = 0 (3)

Furthermore assume that the random diffusivity satisfies

a(x , ξ) = ā + σa

d∑
k=1

√
λkφk(x)ξk (4)

where {λk}dk=1 and {φk(x)}dk=1 are, respectively, the eigenvalues
and eigenfunctions of the covariance kernel

Ca(x1, x2) = exp

[
−(x1 − x2)2

l2
c

]



Diffusion Equation



Resistor Network

V0

R1 R2 RP

RP+1 RP+2 R2P−1 R2P

V

Rk = ξk ∈ [1− ε, 1 + ε], k = 1, . . . , d

Plot sobol indices



Challenges

I Performing MCMC sampling in high dimensions

I Reducing the number of random variables used to represent
the random friction field

I Efficiently building surrogates (today’s topic)

I Constructing adaptive sampling strategies for small
computational budgets

I Leveraging multi-fidelity models to build surrogates

I Determining the identifiability of the KLE modes: balance
sampling of the model with the information content of the
observational data

I Model structure error

Recent improvements to MCMC still require many model runs
Make comment about choosing correlation lengths


